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ABSTRACT 

This paper proposes rethinking how ontologies are used to 

compose web services into business processes. Unlike hand-

crafted ontologies, we describe using a multi-agent system (MAS) 

to automatically generate semantic mappings from service 

interfaces. Comparing synonyms and contextual clues, we infer 

meanings of input and output parameters with no explicit 

semantics (as in a Web Services Description Language 

document). We further describe how this semantic mapping can 

be used to derive executable processes by comparing the derived 

ontologies of each service interface and mapping each service's 

outputs to inputs of every other service and finding the paths 

through the resulting graph.   

Categories and Subject Descriptors 

H.3.5 [Information Storage and Retrieval]: Online Information 

Services – Web-based services; I.2.11 [Computing 

Methodologies]: Distributed Artificial Intelligence – Multiagent 

systems 

General Terms 

Algorithms, Experimentation, Theory. 

Keywords 

Multi-agent system, web service, ontology, semantic workflow. 

1. INTRODUCTION 
Web Services are promoted as the next evolution of software 

reuse—build it once, invoke it from any platform using almost 

any programming language. The promise of reuse is predicated on 

the widespread availability of web services that can be rapidly 

composed and recomposed into new workflows as business needs 

evolve. Instead of developing new systems or applications, 

developers will adapt to changing business processes by adding 

new services that users could invoke as needed. In addition to 

speeding up development cycles and simplifying the introduction 

of new capabilities to existing systems, widespread web service 

deployment will allow end users to add new functionality at run 

time. 

In its simplest form, the idea is for developers to expose 

capabilities as web services and register these services in publicly 

available registries using protocols such as Universal Description, 

Discovery, and Integration (UDDI). Users will search the 

registries for services that perform some desired task, and then 

compose those services into a workflow that meets their business 

needs. 

Currently, most successful web services deployments are focused 

either on improving the developer’s ability to write and update 

applications quickly, or on giving business partners access to data 

without allowing direct access to the data store. Sabre Holdings, 

one of the world’s largest travel companies, has had great success 

deploying services to simplify its own application development 

and the ability of third parties to connect to their data systems 

[12]. However, empowering users to modify their workflows as 

business needs changed was not a consideration. Similarly, ING 

deployed a service-oriented architecture that simplifies the task of 

updating and integrating applications, but it too is focused on 

improving the lot of developers, not empowering end users [6]. 

The vision of run-time discovery and invocation of web services 

is powerful and attractive, but it has not come to fruition because 

realizing that vision is more complex than it sounds. In this paper, 

we describe an alternative method to enable dynamic service 

composition. We do this by presenting: 

• An example scenario that illustrates the issues 

complicating dynamic workflow composition; 

• A description of the technology shortfalls that are 

preventing dynamic workflow composition; 

• A new approach to enable dynamic composition; and 

• Contributions of this approach.  

2. EXAMPLE SCENARIO 
We present a simple but illustrative example drawn from two 

publicly available Web Services. The first service, 

XigniteGlobalQuotes [36], accepts a stock symbol as input and 

returns the opening, closing, and other price points of the stock 

together with the currency the prices are valued in. The second 

service, ForeignExchangeRate [37], returns an exchange rate 

based on ―from‖ and ―to‖ currencies submitted. If a user wants to 

check the value of a stock on the London exchange and convert 
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the price from pence to US dollars, it should be a simple matter to 

parse the output from the first service to extract the currency type, 

submit that to the second service, and use the returned rate to do 

the calculation. 

In practice, using the output from the first service as input to the 

second service requires significantly more work than expected. 

One obvious difference is syntactic: the first service returns a 

value called ―Currency,‖ while the second accepts a value called 

―CommaSeparatedListOfCurrenciesFrom.‖ Both are of type 

string, but nothing in either interface indicates whether these 

elements use the same value set or XML schema declarations. A 

developer must read the documentation for each service to know 

whether the services can be composed in the desired way or if 

some intermediate step is required to convert the currency 

identifier supplied by the first service into the currency identifier 

accepted by the second service. As a result, the desired workflow 

cannot be composed by an end user when needed; it must be 

designed and composed by a developer in advance of the need. 

Previous work focuses on using an ontology to define the terms 

used as inputs and outputs together with their relationships to 

each other. While ontologies are a help, they have limitations—if 

the services were originally developed using different ontologies, 

many of the same manual integration steps will be necessary. 

Even if both services use a common ontology, it takes a 

knowledgeable modeler to develop and maintain that ontology. 

There is an additional aspect to this scenario that we consider. The 

proliferation of new tools and data sources available to an end 

user can result in information overload. This is increasingly true 

in the field of intelligence analysis, where new data sources and 

services are being fielded more rapidly than most analysts can 

learn how to use them. As a result, end users revert to the tools 

they know best, regardless of whether a new capability might meet 

some of their analytical needs. By analyzing new services as they 

become available and determining what new workflows they make 

available, we may be able to assist end users by giving them the 

ability to ask new questions, such as ―I have information X [i.e., 

some service input], what can I ask about it [i.e., what service 

outputs are available from X]?‖ Another potential use is giving 

the user the capability to define some needed information and 

then ―backtracking‖ through the available services to find the 

possible inputs that will yield the desired information; this would 

be the equivalent to asking ―I need information X, what 

information is required to get it?‖. Instead of analysts spending 

time learning how to chain these capabilities together, we can 

automate that discovery and composition and free them to 

concentrate on the information. 

3. TECHNOLOGY SHORTFALLS 
Many techniques for dynamic composition of web services have 

been proposed; an excellent overview can be found in [2]. The 

main reason dynamic composition has not been deployed in 

operational systems is that several elements must fall into place in 

a mutually supporting manner, and these elements have not yet 

materialized. 

Foremost among the missing pieces is the semantic 

interoperability that is a prerequisite to integrating any two 

components in a system. We define semantic interoperability as 

the degree to which two interfaces use common meanings for 

input and output elements irrespective of the names of those 

elements. In the example cited above, the two services are not 

syntactically interoperable because each uses a different name to 

denote the currency element in its interface. If each uses the 

International Standards Organization (ISO) standard 4217 

currency codes, they are semantically interoperable1. Conversely, 

if one service uses the ISO 4217 alphabetic codes and the other 

uses a text description that does not conform to the ISO 

designation, then the services are not semantically interoperable. 

Whether two services are semantically interoperable is not readily 

apparent from interface definitions such as Web Services 

Description Language (WSDL), but must be interpreted from the 

context or specified in an ontology. This ontology may be stored 

externally and referenced by a Universal Resource Identifier 

(URI) or it may be incorporated directly into the WSDL.  Without 

a common understanding of the meanings of terms, it is left to the 

developer to determine what the service does and what input and 

output data it uses. Service providers have little incentive to use 

common semantics; ensuring commonality consumes limited 

resources with no guaranteed benefit. Because developers have to 

do the same level of research to use web services that they do 

when using traditional libraries, the UDDI registries that were to 

enable dynamic service discovery and invocation have withered 

[23]; the public UDDI registries unveiled by large companies 

such as Microsoft and IBM a few years ago have all been closed. 

Their place has been taken by web repositories aimed at human 

users such as www.seekda.com. Such registries offer a way for 

developers to find and reuse services, but do not support dynamic 

discovery and invocation of services; these sites are generally 

design-time resources.  

There are other missing pieces to the puzzle: 

• Creating application workflows at run time, 

• Handling errors within composed workflows, and 

• Adapting to heterogeneous security models. 

First, as discussed in [10], the ability to quickly and easily create 

or modify application workflows at run time is not supported by 

current workflow definition languages. These languages are 

complex and not readily accessible to end users. Second, error-

handling within composed workflows requires manual analysis 

and intervention. In order to ensure that a workflow either runs to 

completion or fails in a graceful manner, potential error 

conditions must be anticipated and appropriate actions planned. 

Such error handling must ensure that consumers are not penalized 

by receiving incorrect data or being charged for services not 

rendered. Third, the use of different security models by different 

services prevents ready interoperability because services cannot 

share authentication, authorization, and billing information for 

users who invoke the services. Each of these shortcomings of the 

current web services landscape is discussed below 

3.1 Semantic Interoperability 
The single largest barrier to run-time service discovery and 

invocation, as well as the composition of services into workflows, 

is the lack of semantic interoperability of services from different 

providers. This issue is not confined to users attempting to find 

                                                                 

1 This is true even if one uses the ISO alphabetic codes and the 

other uses the ISO numeric codes, as the ISO standard provides 

an unambiguous mapping of one to the other 
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services through semantic discovery; every developer who hopes 

to use a service must spend time learning the semantics of that 

service and how those semantics differ from other components of 

the system. Toward that end, there has been a great deal of 

research into different methods for enabling semantic 

interoperability [1,26,31,41]. All of these approaches have a 

common thread: the use of an ontology to capture the semantics of 

a particular field of endeavor and the mapping of service 

descriptions to that ontology, thereby minimizing the ambiguity 

inherent in human language. 

One solution would be for service providers, within a given 

community of interest, to agree upon a common ontology or a 

common architectural framework, thereby defining a common 

vocabulary and relationships among terms. This option is not 

generally attractive to service providers; the negotiations required 

to agree on a common ontology are time-consuming, and must be 

largely complete before interfaces can be finalized. Agreement on 

a common architectural framework might be easier, but would still 

require all parties to ensure the framework was compatible with 

their implementation environment. The resulting additions to 

development timelines consume valuable resources for an 

uncertain benefit. Even if there were guaranteed benefits from 

cooperation, the success of the negotiations would not be 

guaranteed; the resolution of such inter-organizational issues is 

never as straightforward as the resolution of technical problems.  

Semantic Web Services (SWS) are one proposed solution to this 

issue. SWS, as described in [27], include semantic markup as part 

of the web services description; the ontology is combined with the 

syntactic markup found in a WSDL document into a single 

interface specification. Several mechanisms have been proposed 

over the years, beginning with the DARPA Agent Markup 

Language-Services (DAML-S), which evolved into the Ontology 

Web Language-Services (OWL-S) and other proposals such as 

WSDL-Semantic (WSDL-S), also known as Semantically 

Annotated WSDL (SAWSDL) [24,40]. Some of these techniques 

have been combined with some success [22], but none to date has 

solved the problem. And while these efforts have each shown 

some promise, they all have the same limitations as other 

ontology-driven efforts: semantic heterogeneity. If one concept is 

described by two different ontologies, each using different aspects 

of the concept, the two descriptions are not readily interoperable.  

Some interesting work has been done to address the use of 

multiple ontologies and the need to match ontologies to enable 

interoperability. The work described in [28,30,29] explores a 

method for comparing ontologies and quantifying their 

similarities with the goal of identifying semantic matches; the 

OWLS-MX matchmaker [20] has shown promising results in 

matching service interfaces based on semantics and syntax. Still, 

this is a process that depends on the manual definition of each 

ontology.  Ultimately, all semantic interoperability schemes suffer 

from the same limitations: ontologies must be manually generated, 

and some human must perform the semantic matching of services 

that do not share a common semantic markup. 

3.2 Workflow Development 
Within the context of this discussion, we use the term ―workflow 

development‖ to refer to a multistep process wherein two or more 

Web Services are composed in such a manner that the output of 

one is used as input to the next, continuing until the desired task 

is completed. A workflow can be classified as one of two types: 

orchestration or choreography. Orchestration describes an 

executable process that combines several services into a single 

logical unit that is controlled by a single party to a transaction. An 

orchestration may be deployed and invoked as a discrete unit. By 

contrast, choreography is a more involved process where 

participating services exchange messages in order to accomplish 

some task. This makes choreography well-suited to agent-based 

applications, where individual agents can represent the constituent 

services and negotiate the workflow composition and execution 

by passing messages among themselves, similar to mechanisms 

described in [19,17,41]. For the sake of simplicity, and because 

the concepts described here apply to both orchestration and 

choreography, we use the term workflow to encompasses both 

types of process composition  

The difficulty of composing web services into complex workflows 

is another major barrier to the advent of rapidly reconfigurable 

applications. The current service workflow definition languages 

are very expressive but also very complex. Among these 

languages, the Business Process Execution Language for Web 

Services (BPEL4WS) is the most common and well-known. Other 

proposed approaches, such as the Web Services Choreography 

Description Language (WS-CDL) [3], are likewise too complex to 

be readily accessible to the lay user. Even if all available services 

were semantically interoperable, the complexity of workflow 

definition languages would present a significant barrier to 

dynamic composition.  

One suggested approach for improving the usability of workflow 

definition languages is to develop a symbolic encoding that would 

simplify manipulation of the workflow components. Mapping 

Unified Modeling Language (UML) concepts to BPEL4WS is one 

approach. In [38], Skogan et al use XSLT to transform UML to 

BPEL4WS. This has the advantage of using a symbolic language 

(UML) that is familiar to a large number of developers and 

business analysts. However, there are no established semantics for 

BPEL4WS. For this reason any standard mapping of UML to 

BPEL4WS remains an open question as discussed in [25]. Such a 

mapping would help to unlock the power of BPEL4WS and make 

it accessible to users. But even with a way to symbolically 

manipulate BPEL4WS workflows, the problem would still not be 

solved because of the inherent complexities of BPEL.  

An alternative approach is described in [39], where UML activity 

models are used to represent a generic workflow that is then 

matched to concrete services and refined to fulfill the workflow 

purpose while meeting the user’s preferences (e.g., booking travel 

while not exceeding a given cost threshold). This approach does 

not translate the UML into BPEL4WS or another formal process 

language, but its constraint-based approach does provide a strong 

formal process to verify that the composed process meets the 

user’s needs. It should be noted that this process relies on the 

developer to ensure the services are semantically interoperable.  

Another option for making workflow development more 

accessible is to find a way to simplify matchmaking between 

services—determining that the output message of one service can 

be used as the basis for an input message to another service. Any 

such match need not be exact. Taking the example at the 

beginning of this paper, the output of the XigniteGlobalQuotes 

service is a superset of the inputs required by the 

ForeignExchangeRate service; we can compose them into a 

workflow even though the match is not exact. (Note that this also 



assumes the services are semantically interoperable.) Once such 

simple connections can be discovered, inferring longer, more 

complex workflows can be viewed in terms of graph theory (as 

explained below).  

If a data set that serves as an input or output message for a web 

service is thought of as a node, and any service that uses one node 

as an input and another as an output is thought of as an edge, then 

the set of available services forms a directed graph that can be 

analyzed to find possible paths from any known data to any 

desired data. (The work in [21] describes a similar approach 

where the nodes are services and edges represent data.) It should 

be noted that any such graph must be acyclical, as cycles in the 

graph may produce unpredictable results. A more detailed 

discussion of this concept is presented in Section 4.2.1.  

Obviously, the problem is more complex than just discovering 

paths. Not all workflows are focused on retrieving data; many are 

focused on performing some real-world function such as 

purchasing goods. Therefore, matching input and output messages 

is only the start; knowing the operations performed by each 

service and the real-world effects of those services (such as 

charging a credit card) is also important. Like the input and output 

elements, the operations must also be semantically interoperable 

to some extent. A newly discovered service with an operation 

―GetCurrentRates‖ may perform the same function as the 

ForeignExchangeRate service operation ―GetLatestRates,‖ or it 

may return information about prices of electricity (depending on 

the meaning of ―current‖).  

One other issue is important to workflows with real-world effects: 

the need to maintain the state of the transactions that are part of a 

workflow whose components are themselves stateless. For 

example, consider a workflow that searches for a camera meeting 

particular criteria, selects a vendor based on some combination of 

features and price, and then purchases the camera. First the 

workflow will need to search available cameras to find which ones 

meet the specified criteria. Next, the workflow will have to check 

prices for each of the cameras. The workflow will then need to 

make a selection and execute the purchase. Obviously, 

maintaining the state of the process is essential to its successful 

completion. This includes tracking which cameras meet the 

specified criteria, which vendors carry the desired cameras, and 

available prices from each vendor. In addition, the ultimate 

selection and the status of the billing transaction must be 

maintained to complete the workflow successfully. Such a 

workflow requires either a state-aware data structure that 

maintains the state of the workflow or some external support 

framework to maintain the state of the process. 

3.3 Error Handling 
A critical enabler of any workflow system is error handling; 

unless errors are recognized and dealt with appropriately, the 

ultimate success or failure of any composed workflow may be 

ambiguous. Determining how to react to errors in a composed 

workflow is perhaps the most complex task of the workflow 

development process. One of the strengths of BPEL4WS is its 

robust error-handling mechanism. Process designers can define 

error conditions and specify the actions to be taken if an error 

occurs. While powerful, this is also part of what makes 

BPEL4WS a very complex language. To enable the dynamic 

composition of workflows, we must also simplify error handling. 

There are different types of service errors. Consider a free service 

that takes a location as input and returns a weather forecast. If this 

service fails, the only adverse effect is that the user gets no 

forecast. In the case of the camera purchase workflow discussed 

above, failure can be more disruptive: if the purchase service fails 

after the credit card billing is submitted but before the order to 

actually ship the camera is sent, the user’s card will be charged 

without the camera being sent. In any composed workflow, 

predicting, detecting, and handling these error conditions 

correctly is the difference between a reliable workflow that helps a 

user accomplish some task and a composition whose behavior is 

indeterminate. 

The seemingly simple act of detecting errors is a non-trivial 

undertaking. Some errors are simple to detect: the service returns 

an error message. Other errors may be more subtle.  If a service 

operates asynchronously the user sends the input message and 

waits for the output message. How long should the consumer wait 

for a reply before deciding the service has failed? Some services 

return small amounts of data and can be expected to return within 

seconds; others may return larger amounts of data or be located 

far enough away that network traffic issues can cause the service 

to take longer to respond in some circumstances than others. 

Detecting errors is only part of the problem. What to do with 

those errors is another matter entirely. Some workflows may be 

more fault-tolerant than others. If workflows are derived from a 

directed graph as discussed earlier, then it may be possible to 

route around the error if other paths from the start point to the 

desired end point are available. If no alternate route is available, 

partial results may be acceptable to the user. For example, if a 

workflow accepts a location and time as input, retrieves a weather 

forecast for that time and place, then plots it to a map and returns 

the map to the user, the raw weather forecast may be an 

acceptable response if the mapping service fails.  

Another important aspect of dealing with errors is rolling back a 

partially completed transaction. In the case of the camera purchase 

described above, detecting that an error has occurred between 

credit card billing and shipment of the camera does little good 

unless the credit card transaction can be canceled. Relational 

databases implemented the two-phase commit protocol for this 

very reason: completing only half of a financial transaction is 

unacceptable. While BPEL4WS also has mechanisms for dealing 

with this issue [7], these potential errors must be identified by the 

process designer, and that designer must specify the action to be 

taken in the event a fault is encountered. A mapping of service 

errors to a common semantic vocabulary would provide a ready 

way for inferring the severity of an error and the appropriate 

response. 

3.4 Security 
The remaining component for addressing workflow composition 

is security. Authentication, authorization, data integrity, non-

repudiation, and more must all be adequately addressed to ensure 

the integrity of composed workflows. For many simple workflows 

(such as our original example), the involved services can likely be 

invoked anonymously. But for workflows involving financial 

transactions or sensitive data, security considerations are 

paramount and are a major reason the reconfigurable workflow 

vision remains unfulfilled.  



Harmonizing security models is no easy task. Different services 

may use drastically different security models. Some services allow 

anonymous use; others require a simple username / password pair, 

and still others may require a digital certificate. These 

mechanisms are not inherently interoperable, and bridging their 

differences is far from simple. Even within a single organization 

such as the US Department of Defense, there is no agreement on 

how best to manage service security. There are standardization 

efforts underway, such as the OASIS WS-Security specification, 

but none has achieved the critical mass required to become a de 

facto standard. 

Security is another example of where semantic interoperability is 

also important. As with input and output elements, just because 

two services’ security characteristics are syntactically 

interoperable does not mean those services are semantically 

interoperable. The frameworks described in [16,13] provide a 

method of interoperability where the security objectives and 

specific properties of the system and individual services are 

formally described, and the requirements of the services 

comprising a workflow can be negotiated to come to a mutually 

agreeable solution that allows the workflow to proceed. While 

promising, this concept suffers from the same adoption issues that 

plague semantic markup of service interfaces: until there is a 

critical mass of services implementing it, there is little incentive 

for service providers to adopt this method; and until service 

providers begin to adopt this method, the critical mass will not be 

reached. 

Another approach is to establish networks of trust among service 

providers and identity providers. But establishing mutual trust 

among disparate organizations remains a work in progress; many 

organizations with very sensitive data are leery of trusting identity 

providers over whom they have no leverage. However, industry 

efforts such as the OpenID foundation are attempting to assemble 

a critical mass of major industry players to create a de facto 

identity management standard. The OpenID foundation has met 

with limited success to date, but their efforts are still in their 

infancy. 

Other efforts, such as the Shibboleth project 

(shibboleth.internet2.edu), seek to create webs of trust among 

organizations that can elect to trust each other as identity 

providers or service providers. These are binary relationships, but 

the resulting webs of trust can grow to include multiple identity 

providers who trust and are trusted by multiple service providers. 

To be sure, this is not the be-all and end-all of security, but 

getting a handle on identity management is the first prerequisite to 

enabling interoperable security among services from many 

different providers. 

4. TECHNICAL APPROACH 
Much good work has been done to lay the groundwork for 

dynamically composing services into complex workflows, but all 

previous approaches share one or two major drawbacks. One is 

the use of a purpose-built framework for developing, deploying, 

and managing services. Frameworks that take this approach 

provide the necessary interoperability at the expense of flexibility. 

All the services to be integrated must use the common framework 

to enable workflow composition. Services that were created using 

a different framework (or no framework at all) are not readily 

integrated into the framework without significant rework. 

The other drawback is the use of manually created metadata to 

annotate service interfaces. This metadata, in the form of 

ontologies or other markup, is time-consuming to produce and 

maintain. Because it is oriented toward a specific set of services 

used in a specific business domain, such hand-crafted metadata 

also tends to be brittle; changes to service interfaces require 

changes to all the relevant metadata. At some point the collection 

of services and metadata will reach a critical mass where 

maintenance of existing artifacts consumes more effort than the 

integration of additional capabilities. 

4.1 Rethinking Ontologies 
Part of the problem is the ontologies themselves. Traditional 

ontologies are carefully crafted representations of a field of 

knowledge, capturing classes of things, their characteristics, and 

the relationships among the classes. These are excellent 

mechanisms for capturing the complexity and nuance of an entire 

field of knowledge, but for describing the limited number of 

inputs or outputs in a typical web service, they are overkill. For 

example, an ontology describing weather will contain classes for 

cloud types, cloud layers, weather events, temperature types 

(ambient, dew point, current, forecast) and other factors important 

to a thorough understanding of the weather domain. By contrast, a 

weather web service can be expected to contain elements for 

current temperature, forecast maximum and minimum 

temperatures, probability of precipitation, and other factors 

pertinent to the forecast for a given location. Matching the few 

elements in a service interface to the many elements in a fully-

formed ontology requires a large and growing number of 

comparisons as the ontology expands. 

Instead of large, complex ontologies that attempt to describe an 

entire field of knowledge, it would be much more efficient to 

create smaller ontologies containing only those elements needed 

to describe the input and output messages of services that are of 

interest to a given community of users or developers. Smaller 

ontologies are easier to build and maintain, and require many 

fewer comparisons when evaluating whether a given service's 

inputs or outputs fit into the ontology. Smaller, simpler ontologies 

may have another useful characteristic: it may be possible to 

automatically generate them from the services themselves. 

4.1.1 Calculating Semantic Similarity 
Every service interface includes input and output messages made 

up of one or more parameters. The names and arrangement of 

these parameters contain an implicit ontology embedded within 

their structure; they reflect the developer's understanding of the 

organization of the data the service operates on. Current web 

service compositions are built upon these ontologies: developers 

use the service interface and any available documentation to 

determine what inputs and outputs each service uses and how 

those parameters relate to the inputs and outputs of other services. 

Developers use the names of the service parameters, together with 

contextual clues, to infer what data types the parameters refer to. 

A formal version of such a process is described in [34]. While 

programming such a complex process into a single program would 

be extremely difficult, it should be possible to develop an 

analogous process using an agent based system where each agent 

performs a simple task. Because each agent performs only a single 

well-defined task, the programming of each agent is relatively 



simple. The interaction of many such simple agents can yield very 

complex behaviors. 

Each input or output parameter of a web service is described by 

several characteristics: the name, the datatype, the name of the 

operation, and other factors as described in [5]. In addition to the 

characteristics that are specific to each parameter, there is 

additional contextual information: namespaces referenced by the 

WSDL, the names of operations associated with the parameter, 

and other factors. Each of these can be the subject of a specific 

type of agent that is specialized to evaluate that factor. 

To infer if the inputs and outputs are semantically compatible, the 

attributes of each service's parameters can be compared to each 

other and their similarity evaluated to generate a compatibility 

score. Each factor is evaluated and scored on a scale in the range 

of 0..1, where 0 is no similarity and 1 is an exact match. These 

scores are then weighted differently to reflect the likely relevance 

of that factor to the semantic type of the parameter. An example of 

some factors to consider and possible weights is shown in Table 1 

These factors are those available in a typical WSDL; others could 

be added. The weights shown are purely speculative and are 

shown for illustrative purposes; they are based on the likely 

influence that a given factor has on the semantic similarity of the 

service parameters. If both A and B reference the same 

namespaces, we can reasonably infer that any two parameters with 

the same name are more likely to have the same meaning than any 

two parameters with the same name whose services reference 

different namespaces. 

Table 1 - Possible Comparison Weights 

WSDL Element Possible Weight 

Namespaces 0.4 

Operation Name 0.1 

ComplexType Name 0.2 

Parameter Name 0.2 

DataType 0.1 

minOccurs 0 

maxOccurs 0 

Total 1.0 

 

Assigning a specialized agent to evaluate each of these factors 

allows us to program that agent in a way that optimizes its 

performance for that narrow task. A supervisory agent can then 

collect the evaluation scores generated by each agent and combine 

their weighted scores to generate an overall similarity ranking. 

Decentralizing the evaluation of individual factors in this way has 

the added benefit of increasing the number of factors that are 

evaluated by deploying additional agents that perform additional 

evaluations and report their results to the supervisor. 

The evaluation of each parameter individually gives an indication 

of the likelihood that any one parameter is semantically 

compatible with any other parameter. The combination of these 

evaluations allows us to infer whether the output of one service 

can serve as the input to another. Inferring these semantics is no 

easy task, but the work described in [28,29,30,35] indicates that it 

may be possible. 

4.1.2 An Illustrative Example 
Consider two services, A and B. The output of A can be used as 

the input to B if the set of inputs of B is the same as, or a subset 

of, the outputs of A ( inout BA  ) and each input of B 

corresponds to an output of A of the same semantic type. (As will 

be shown, syntactic matching is not necessary but would be 

helpful.) For this example, let A be a service that accepts a 

latitude and longitude as input and returns the postal code, 

county, and state in which the position is located; let B be a 

service that accepts a postal code as input and returns a weather 

forecast for the designated area. The relevant parameters are 

summarized in Table 2. 

To compare these services, agents are deployed that perform 

several checks to evaluate the compatibility of these service inputs 

and outputs. One agent does a straight comparison of the 

namespaces and evaluates their overlap. Another agent checks 

each parameter name against other parameter names through such 

means as a direct syntactic comparison, synonyms derived from 

WordNet, the application of stemming algorithms, and other 

techniques that may yield an indication that two parameters may 

be related. 

Table 2 - Service Parameters 

Service A Output 

Namespaces <none> 

Operation GetPostalCode 

ComplexType PostalRegion 

Parameters name type minOcc maxOcc 

 postalCode integer 1 1 

 county string 0 1 

 state string 0 1 

Service B Input 

Namepsaces <none> 

Operation GetWeatherForZip 

ComplexType <none> 

Parameters name type minOcc maxOcc 

 zipCode integer 1 1 

 

Still other agents perform similar evaluations on the remaining 

aspects of the interface, such as parameter data types, 

ComplexType names, operation names, etc. Applying these 

comparisons to each parameter from Service A results in a 

semantic similarity score for every parameter in Service B; those 

parameters with similarity scores exceeding a set threshold are 

determined to be semantically compatible. In this example, 

Service B has only one input parameter (zipCode), and it is 

evaluated as sufficiently similar to one of Service A's output 

parameters (postalCode) that we determine they are semantically 

compatible. Because all of Service B's inputs have a compatible 

match in the output of Service A, we know that Service A and 

Service be can be combined into a simple workflow. 

4.1.3 Dealing with Unknown Terms 
Particularly in the early stages of the analysis described here, we 

can expect that there will be service parameters that cannot be 

matched to any known terms. This may be because the parameters 

are new, and therefore have no corresponding parameters among 

the terms that have already been identified and matched. These are 



new additions that must be added to the set of terms to be 

compared as more services are analyzed; it is fair to expect that as 

more services are added the new term will eventually be matched 

with parameters that are part of the additional services. 

In other cases, the lack of a match could be due to some aspects of 

the service interface that prevent the agents from finding any 

suitable candidate matches to known parameters. In these cases, 

the new parameter should be presented to a user for confirmation 

as a new semantic type or for manual selection of an appropriate 

match. This adjudication has the added effect of giving the system 

an ability to learn even though the individual agents may not be 

designed to learn from their experience. 

4.1.4 Generating a Service Ontology 
As more comparisons of the type described above are performed, 

we expect that certain common characteristics of compatible 

parameters will emerge. These common characteristics can be 

gathered to develop ―master terms‖ that can serve as initial points 

of comparison for new service parameters. Relations among these 

master terms can be inferred from the frequency with which they 

appear together and any similarities among ComplexTypes 

containing them. By capturing these master terms and their 

relationships we can generate a minimal ontology that contains 

only those terms and relationships that are relevant to the set of 

services under consideration. As additional services become 

available, the ontology can grow to accommodate the new 

parameters and relationships.  

Any ontology developed in this manner will undoubtedly have 

some ―orphan terms‖ that are parameters for a service but have no 

compatible terms or established relationships to other terms. Some 

of these orphans will become a part of the ontology as more 

services are added and the set of parameters grows; others may 

remain orphans indefinitely. 

Any ontology developed in this manner will not necessarily be an 

ontology in the classic sense of a structure that captures all the 

nuances of the subjects and relationships in a field of knowledge, 

but it will be as detailed as needed for the purpose of comparing 

service interfaces in order to generate possible workflows. Despite 

the initial limitations of the content of this ontology, it should still 

be possible to capture that ontology in a formal representation 

such as OWL or RDF. In addition, it should be easy to update 

such an ontology as more terms are learned or by allowing a 

human ontologist to manually modify it. 

4.2 Defining Workflows 
Determining that the outputs of one service can serve as the inputs 

of another service is a single step that will allow us to build only 

the simplest workflows. To build more complex, multi-service 

workflows we will need to find all the possible compositions 

among the set of available services.  

Consider four services denoted A, B, C, and D. As explained 

above, any two services can be composed into a simple workflow 

if the outputs of one can be used as the inputs of the other 

(e.g., inoutinout DCBA  , ). Longer workflows can be 

composed by applying the same principles across the set of 

available services. For example, A, B, and D can be composed 

into a workflow if the outputs of A can be used as the inputs of B 

and the outputs of B can be used as the inputs of D 

(i.e., inoutinout DBBA  ). If the outputs of C can be 

used as the inputs of D, then we have the following possible 

workflows in this set of services: A to B, A to D, B to D, and C to 

D. 

As the set of available services expands, this web of potential 

workflows will continue to expand, and maintaining the list of 

possible workflows will become more difficult unless we are able 

to leverage some other method for deriving workflows. Pairwise 

comparisons of a large number of services would be prohibitive. 

To avoid this, we plan to make use of the ―master terms‖ 

discussed in Section 4.1.4. By comparing the inputs and outputs 

of any service to only the master terms, we can reduce the number 

of comparisons. Every match of a parameter to a master term 

equates to a match of that parameter to all the other parameters 

that match that term. These matches reduce the number of 

message comparisons that have to be made to only those that have 

already established a potential match thorough the  match to a 

master term. 

4.2.1 Workflows as Directed Graphs 
The input and output messages of a service are in effect simple 

data objects. If each of these data objects is thought of as a node 

in a graph, each service can be seen as an edge in that graph. The 

result of this is a directed graph that captures the inputs and 

outputs of each service and their relationships to each other. Any 

path through this graph represents a potential workflow from one 

data object (service input) to another data object (service output). 

(The work described in [21] uses a similar concept, but uses 

nodes to represent services and edges to represent data.) 

In the simplest case, if the results of each matching of a service’s 

input and output parameters to another service’s input and output 

parameters are captured as a node in the graph, the set of possible 

paths through that graph equals the set of potential workflows that 

can be composed from the available services. The application of 

any algorithm that calculates the paths among all nodes will yield 

the set of potential workflows. Some of these workflows will 

doubtless be trivial, and others may not have any particular 

business use. But regardless, all the potential workflow 

compositions that can be created from the available services will 

be calculated. Using services A, B, C, and D discussed above, an 

example of this is depicted graphically in Figure 1. 

 

 

A 

C 

B 

D 

Figure 1 - Workflow as a Directed Graph 



There are complexities that the simple case discussed above must 

address to be of any utility. To begin with, the paths through the 

graph that represent workflows must avoid cycles; any cycle in a 

given workflow would result in a workflow that has no end. 

Likewise, identifying duplicate paths between any two nodes will 

be necessary for two reasons: first, to ensure we select the optimal 

composition for any given business process (i.e., initial and final 

data set); second, to identify alternate paths to completing any 

given business process. These alternate paths are an important 

component in identifying ways to detour around services that are 

not functioning properly or whose costs are more than the user is 

willing to incur. 

Once these workflows are identified, they can be captured for later 

use without the need to re-calculate them all at run time. 

Capturing them as simple BPEL4WS processes would also allow 

the possibility of exporting them for use within other systems that 

have access to the same set of services. 

4.2.2 Path Management 
The potential number of paths that will result for a large number 

of interoperable services may become very large, making path 

calculation a very resource-intensive undertaking. Calculating 

these paths for immediate presentation to the user each time a new 

service is introduced is probably not feasible for a large number of 

services. This is especially true because we can expect that a large 

number of services will not only introduce new paths to the graph 

but will introduce new nodes as well, requiring the existing paths 

to be re-calculated each time a new service is added. 

We expect different sets of paths may be of interest to different 

users. Some users may know what information they need (e.g., a 

weather forecast) but not the prerequisite information required to 

get it (e.g., a city name, a postal code, etc.). Other users may have 

the exact opposite problem, knowing what information they have 

and wanting to learn what additional information they can retrieve 

related to it. Still other users may know what they have and what 

they want but not know if it is possible to get from one to the 

other with the available services. 

One of the advantages of the agent-based approach we are 

proposing is that the different path calculations can be conducted 

concurrently. While some agents are analyzing a new service and 

finding potential matches, other agents can update the paths 

available for different uses as new matches are found. And 

because the agents can be readily interchanged at run time, we 

will be able to experiment with different analysis methods for 

analyzing the service connections to find available paths through 

the graph. 

4.2.3 Additional Considerations 
The simple case described above allows us to calculate only 

simple single-threaded workflows. There are more complex 

workflows that require a more sophisticated analysis before they 

can be made available to the user. Consider the services depicted 

in Figure 2. In contrast to the nodes shown in Figure 1, this graph 

has a node (denoted by a hexagon) that requires the output of two 

services to make up the input of a third service. 

 

 

In this example, the input to service Z is composed of the outputs 

of services X and Y (i.e., inoutout ZYX  ). When 

calculating possible workflows that can be created from our set of 

available services, we require the outputs of both services W and 

V in order to form the input required by service Y. If the user has 

the data required as input to service X or the inputs required by 

both W and V, then a usable path to Z can be calculated; if the 

user has only the inputs required by V or the inputs required by 

W, then neither service Y nor service Z cannot be part of any 

viable workflow. This sort of conditional path calculation is not 

accounted for in standard algorithms that calculate all-points paths 

within a directed graph. Because of dependencies such as this 

within the graph, more sophisticated algorithms will be necessary 

if more complex workflows are to be calculated from the set of 

available services. 

4.3 Error Handling 
Most WSDL descriptions contain no direct indications of the 

ways in which the service they describe might fail, so inferring 

possible failure modes within any workflow composition 

developed in the method described here will not be a simple 

matter. The most obvious type of failure is a service that returns 

no response. This can be accounted for with simple timers that 

consider a service to have failed if no response has been received 

within a pre-determined time limit. As there are no specific 

quality of service metrics defined within the WSDL specification, 

deriving a time limit might be best handled as a trial-and-error 

process. Supervisory agents monitoring workflow execution could 

keep track of execution times for individual services and develop 

performance profiles that could then be used as a guide for 

determining when a service was past its expected completion time.  

In addition to timing out, services may return error codes when 

they encounter a problem. Just as the semantics of inputs and 

outputs are learned, the semantics of errors could also be learned. 

By capturing input and output values for services whose 

parameters have been learned, agents could learn to recognize 

―good‖ output from errors. 

While recognizing an error does not guarantee that the error will 

be correctly handled, it is a necessary prerequisite to handling the 

error correctly. Once an error is encountered, supervisory agents 

can attempt to route the workflow around the error if an alternate 

path exists, or if no alternate path is available the error could be 

returned to the user for manual resolution. 

X 
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Figure 2 - More Complex Workflow 



4.4 Security 
Dynamically harmonizing security models is not an easy task, and 

nothing described here can, by itself, solve that problem. 

However, if the semantics of the input and output parameters can 

be learned, it follows that a similar process can be applied to any 

available security information to be found in the WSDL. In some 

cases, this information may already be captured in the inputs in 

the form of a username and password; other cases may be much 

more complex. While a more thorough investigation of security 

harmonization is necessary, the process described here could, at a 

minimum, infer whether any two services used a similar security 

model and could be expected to inter-operate with relative ease. 

This is not a complete solution, but it does offer a minimum level 

of matching that could be used in generating workflows at run 

time. (Note that this all assumes the available services are not part 

of a common security framework; use of such a framework would 

make this step superfluous.) 

5. IMPLEMENTATION 
The approach discussed above is a largely theoretical, but some 

initial, admittedly very limited testing of the ideas described 

shows enough promise to merit further research. To gauge the 

viability of this approach, we conducted a limited evaluation of 

service interfaces to evaluate whether an automated matching 

approach might prove useful. Lacking a readily available service 

registry, we elected to select a sample of services from a 

publically available service search engine and test those against 

the example described in Section 4.1.2. 

5.1 Initial Steps 
The implementation to date has been confined to initial steps to 

gauge the feasibility of the approach discussed and illuminate the 

difficulties that we can expect to encounter if we proceed further. 

Our initial implementation is built on the JADE (Java Agent 

Development) framework [4], an open-source framework initially 

developed by Telecom Italia. Our tests use a small number of 

agents to parse the service WSDLs and do some simple analysis. 

5.1.1 Superintendent Agent 
The Superintendent Agent is the initial entry point for any service. 

It receives the URL for a WSDL, retrieves the WSDL, then parses 

the WSDL into its constituent operations and their input and 

output messages and their parameters. These operations, 

messages, and parameters are all loaded into a relational database 

for further processing. Each operation is then passed to a Foreman 

Agent for further processing. 

5.1.2 Foreman Agent 
Each Foreman Agent receives an operation and retrieves its input 

and output messages. Each message is parsed for its input and 

output parameters, and each parameter is passed to a Crew Chief 

Agent for more detailed analysis. 

5.1.3 Crew Chief Agent 
Crew Chief Agents are where the real work of analysis is done at 

this point. For now, the Crew Chief analyzes each parameter and 

compares it to other parameters. We plan to create a series of 

specialized agents that will each perform some specialized 

analysis of each parameter and report results to the Crew Chief, 

which will combine the results and generate a similarity ranking. 

For example, one agent might take a parameter and retrieve 

synonyms from WordNet for comparison to know parameters, 

while another might compare the name of the parameter’s 

message to known message names. 

5.2 Feasibility Analysis 
Attempting a purely syntactic analysis using the search engine 

available from seekda.com, we conducted two searches; one for 

services containing ―weather‖ and another containing either 

―latitude‖ or ―zip.‖ Knowing that weather forecasts are generated 

for specific geographical areas, our hope was that some weather 

services would accept some location identifier (such as a zip code 

or postal code) and some location services would return a location 

identifier usable by one or more of the weather services. For each 

search, we selected the first 40 results to use as our test sample. 

For each result, we retrieved the WSDL and parsed it into its 

available operations, the input and output messages for each 

operation, and the individual parameters for each message. After 

eliminating those results where the WSDL was unavailable, we 

were left with 68 unique location operations with a total of 134 

output parameters and 30 unique weather operations with a total 

of 187 input parameters. 

5.2.1 Results 
Attempting a purely syntactic matching of location output 

parameters to weather input parameters resulted in zero matches 

even though several of the location and weather services were 

hosted by the same provider. Extending the analysis to a simple 

parsing of parameter names where they are broken up based on 

―camel case‖ and then matching parts of parameter names (e.g., 

―ZipCity‖ matching ―city‖ and ―CityName‖) resulted in 20% of 

location output parameters matching inputs to weather operations 

and 27% of weather inputs having matches to location operations. 

These initial results use all available operations from the services 

selected. If we assume that an operational use of such a system 

would use a set of services that are generally bounded to a specific 

domain of interest, some of the operations analyzed here would 

doubtless not be included in the pool of available operations. For 

example, the operation ―GetDistanceToWater‖ may not be of 

interest. Likewise, some operations, such as 

―GetWeatherByZipCode‖ were in both samples. Filtering out 

duplicates and those services that are only peripherally related to 

retrieving locations and weather information, our results improved 

somewhat. Of the remaining 43 location operations, 30% of the 

84 output parameters had a match to a weather operation input; of 

the 21 remaining weather operations 32% of the 160 input 

parameters matched an available location output. 

5.2.2 Limitations 
While we can expect that there are a number of false positives 

among these results, those can only be identified through manual 

analysis or composing the services and attempting to execute the 

resulting composition. For example, the input ―city‖ may denote 

an identifying code and not the city name. 

Similarly, several outputs use a custom data type such as 

―ZipCity‖ or ―AddressPlus.‖ While it is likely these results 

contain the information necessary for generate an input for 

Figure 3 - More Complex Workflow 



another service (e.g., ―AddressPlus‖ may contain a city name), 

many of these potential matches are not captured by our analysis 

and will require a more sophisticated message parser to enable us 

to automate the required analysis. 

5.3 Next Steps 
The results discussed here are admittedly very limited; they make 

no substantial attempt at inferring the semantics of the parameter 

names and completely ignore namespaces, operation and message 

names, and data types. Despite these limitations, we are very 

encouraged by these results and feel they indicate that the 

proposed approach is promising and merits further research. 

6. RELATED WORK 
The issues discussed earlier surrounding the discovery and use of 

web services have combined to make static binding the norm. But 

there has been promising work toward simplifying process 

composition and improving semantic interoperability. One of the 

most thorough efforts in this area is the METEOR-S Web 

Services Automation Framework (MWSAF) [33], which 

developed a framework that supports the semantic markup and 

subsequent composition of web services into complex workflows.  

This framework is aimed primarily at business-to-business 

applications, where domain experts can craft reusable workflows 

that are readily reconfigured as the needs of the business evolve 

over time. However, this is still a system that relies on the use of 

experts to develop and reconfigure workflows as needed; it does 

not put that power into the hands of end users. 

Another framework is the Web Service Execution Environment 

(WSMX) [10], which enables the development and execution of 

web services based on the Web Services Modeling Ontology. 

However, while WSMX provides an interesting mechanism for 

marking up web services and performing matchmaking, it does 

not fully address the issues of composing complex workflows 

from web services discussed here. 

Still another promising avenue is the Knowledge-based Dynamic 

Semantic Web Services (KDSWS) Framework described in [14], 

which developed a framework for managing the lifecycle of 

semantic web services. The KDSWS framework includes 

specifications for models and languages that aim to solve the 

problems of semantic harmonization and service composition. 

When the Knowledge/Data Model and Language (KDM/KDL) are 

used to describe the information domain of interest, the 

Knowledge-based Dynamic Services/Process Model and 

Language (KDSPM/L) can be used to rapidly compose semantic 

web services into executable processes. But even this framework 

still relies on developers marking up their services with the 

appropriate semantic information. 

One effort with some similarities to our approach is the Woogle 

web service search engine described in [9], but there are notable 

differences. Rather than developing a search capability that will 

let users find and develop applications with services, we are 

focusing on developing a capability that find services and build 

the compositions for immediate use by the user. Also, while 

Woogle uses a clustering algorithm to find similar services based 

on the assumption that input and output parameters are generally 

grouped with similar parameters, we make no such assumption 

and instead rely on matching individual parameters and then 

building up groups of those parameters to match service 

operations. This has the added benefit of enabling us to find 

instances where the outputs of two operations can be combined to 

form the input of a third as discussed in Section 4.2.3. However, 

the clustering used by Woogle may be very useful in generating 

ontologies based on service interfaces as discussed in Section 

4.1.4 

7. CONTRIBUTIONS 
Our contributions fall into three general categories: ontologies, 

metadata generation and workflow composition. 

7.1 Ontologies 
Previous work on service metadata has focused almost entirely on 

associating an externally-generated ontology with a service 

interface. Much of this work has concentrated on inserting OWL 

or RDF ontologies into the WSDL or updating the WSDL 

specification to include an ontology [20,24,26,32,40]. Some of 

these approaches store the ontology outside the WSDL document, 

but they still rely on a classic, hand-crafted ontology. 

In contrast, our work completely rethinks the concept of the 

ontology. Whereas a traditional ontology is a detailed model of 

the knowledge of a specific field, we propose a radically 

simplified ontology that captures only those elements that 

compose the service interfaces under consideration. Such a 

minimalist ontology is not suitable for capturing and describing 

an entire field of endeavor, but it is sufficient to the desired 

purpose of matching service inputs and outputs. 

7.2 Metadata Generation 
While some there has been some work on automated metadata 

tagging [8,11,15], this work focused on matching metadata to 

service descriptions. Unlike previous work we are attempting to 

generate the metadata from scratch based on the information 

available in a standard WSDL description. Furthermore, our 

approach uses a multi-agent system that has two advantages over 

other systems. First, a system composed of many simple agents 

can be readily modified by adding new types of agents to the 

system and factoring their inputs into the overall evaluation. 

Second, a system composed of many agents holds the possibility 

of exhibiting the emergent behaviors often found in such systems, 

similar to that described in [18]. 

7.3 Workflow Composition 
Most workflow composition systems concentrate on simplifying 

the task of developers by making process definition languages 

such as BPEL4WS simpler to use as in [38], or automated 

matching to achieve a specific goal as in [21]. These approaches 

both take the approach of finding specific services to meet a 

user’s expressed requirements. Our approach takes the set of 

available services and finds all the possible workflows available 

within the set. This may not yield a specific business process the 

user wanted, but that process could not be built from the available 

services even if the process were defined manually. Our approach 

has the advantage of finding workflows that may meet the user’s 

needs but would not have been obvious without an exhaustive 

comparison of all possible service combinations. By automating 

these comparisons we significantly reduce the developer’s 

workload. 



8. AREAS FOR FURTHER RESEARCH 
There are other issues to be resolved, including ensuring that state 

information is correctly maintained where necessary for a given 

workflow. But the most important aspect of this idea is the 

possibility that we can relieve the developer of the need to 

generate and maintain the semantic metadata that is necessary to 

enable workflow composition. As the generation and maintenance 

of this metadata is time-consuming and expensive, the ability to 

automate that generation would overcome a significant obstacle to 

making dynamically reconfigurable workflows a reality. 

Additionally, ―learning ontologies‖ that adapt their content and 

structure as new information becomes available is an interesting 

possibility that merits further study. Just as a person’s perception 

of the world changes as they learn new information comes, our 

representations of our knowledge should change. Ontologies that 

learn and adapt would add to our ability to create systems that 

learn and adapt as new services become available. 
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